Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Cornelia Mlynek, ${ }^{\text {a }}$ Henning Hopf ${ }^{\text {a }}$ and Peter G. Jones ${ }^{\text {b }}$ *

${ }^{\mathrm{a}}$ Institut für Organische Chemie, Technische Universität Braunschweig, Postfach 3329,
38023 Braunschweig, Germany, and ${ }^{\mathbf{b}}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study
$T=143 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.052$
$w R$ factor $=0.127$
Data-to-parameter ratio $=16.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(5RS,6RS)-5,6-Di-tert-butyl-2,2,9,9-tetra-methyldecane-3,8-dione

The title compound, $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{O}_{2}$, displays approximate twofold symmetry. The elongated central single bond $[1.563$ (3) \AA] and widened angles [$116.00(16)$ and $115.80(16)^{\circ}$] at the methylene C atoms are probably indicators of steric strain. Molecules are linked in inversion-symmetric pairs by a bifurcated weak hydrogen-bond system of the form $(\mathrm{C}-\mathrm{H})_{2} \cdots \mathrm{O}$.

Comment

Subjecting 2,2,6,6-tetramethylhept-4-en-3-one, (1), to the conditions of the McMurry coupling (Lenoir, 1977) causes a dimerization, but surprisingly this affects not the carbonyl group of the substrate but its $\mathrm{C}=\mathrm{C}$ double bond. As shown here by X-ray structural analysis, the dimer obtained in excellent yield ($80-90 \%$) is the diketone 5,6 -di-tert-butyl-2,2,9,9-tetramethyldecane-3,8-dione, (2).

Received 14 March 2006
Accepted 14 March 2006

The molecule of (2) is shown in Fig. 1. Of the two possible diastereomeric products, the $5 R S, 6 R S$ isomer was formed rather than the meso isomer, for reasons that remain to be investigated. The bond lengths and torsion angles along the chain $\mathrm{C} 1-\mathrm{C} 10$ reflect the approximate twofold symmetry of the molecule (Table 1). The elongated single bond C5-C6 and the widened $s p^{3}$ angles $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ and $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$ may indicate steric strain.
The molecules are linked in inversion-symmetric pairs by the weak, bifurcated hydrogen bonds given in Table 2.

Experimental

To a suspension of zinc dust $(0.45 \mathrm{~g}, 6.8 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.35 \mathrm{ml}$, $0.61 \mathrm{~g}, 3.2 \mathrm{mmol})$ in anhydrous THF (10 ml) and pyridine (0.2 ml) was added a solution of (1) ($0.5 \mathrm{~g}, 2.97 \mathrm{mmol})$ in anhydrous THF $(5 \mathrm{ml})$. After stirring for 18 h at room temperature, the mixture was worked-up and the resulting crystalline raw product purified by sublimation. The spectroscopic data of the analytically pure product $(0.42 \mathrm{~g}, 84 \%$; unpublished results) agreed with the proposed structure.

Figure 1
The molecular structure of the title compound in the crystal structure. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{22} \mathrm{H}_{42} \mathrm{O}_{2} \\
& M_{r}=338.56 \\
& \text { Monoclinic, } P 2_{\mathrm{l}} / c \\
& a=12.353(3) \AA \\
& b=17.289(4) \AA \\
& c=11.475(3) \AA \\
& \beta=117.46(2)^{\circ} \\
& V=2174.7(9) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Stoe Stadi-4 diffractometer ω / θ scans
Absorption correction: none 4032 measured reflections
3827 independent reflections
2762 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.017$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.127$
$S=1.03$
3827 reflections
229 parameters
H-atom parameters constrained

$$
D_{x}=1.034 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 60
reflections
$\theta=10-11^{\circ}$
$\mu=0.06 \mathrm{~mm}^{-1}$
$T=143$ (2) K
Tablet, colourless
$0.7 \times 0.4 \times 0.25 \mathrm{~mm}$

$$
\begin{aligned}
& \theta_{\max }=25.0^{\circ} \\
& h=-14 \rightarrow 13 \\
& k=0 \rightarrow 20 \\
& l=0 \rightarrow 13 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 60 \text { min } \\
& \text { intensity decay: none }
\end{aligned}
$$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0441 P)^{2}\right. \\
&+0.9108 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.18 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

C2-C3	1.535 (3)	C6-C7	1.549 (3)
C3-C4	1.519 (3)	C7-C8	1.517 (3)
C4-C5	1.546 (3)	C8-C9	1.539 (3)
C5-C6	1.563 (3)		
C3-C4-C5	116.00 (16)	C8-C7-C6	115.80 (16)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	166.07 (17)	C5-C6-C7-C8	135.27 (17)
C2-C3-C4-C5	163.84 (17)	C6-C7-C8-C9	159.66 (16)
C3-C4-C5-C6	139.11 (17)	C7-C8-C9-C10	169.88 (17)
C4-C5-C6-C7	36.0 (2)		

Table 2
Hydrogen-bond geometry (\AA, ${ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 15-\mathrm{H} 15 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.98	2.53	$3.333(3)$	140
$\mathrm{C} 19-\mathrm{H} 19 B \cdots \mathrm{O}^{\mathrm{i}}$	0.98	2.58	$3.561(3)$	175

Symmetry code: (i) $-x+2,-y+1,-z+1$.
Methyl H atoms were located in difference syntheses, idealized $\left(\mathrm{C}-\mathrm{H}=0.98 \AA\right.$ and $\left.\mathrm{H}-\mathrm{C}-\mathrm{H}=109.5^{\circ}\right)$ and refined on the basis of rigid groups allowed to rotate but not tip. Methylene and methine H atoms were placed in calculated opositions ($\mathrm{C}-\mathrm{H}=0.99$ and $1.00 \AA$, respectively) and allowed to ride on their parent C atom. $U_{\text {iso }}(\mathrm{H})$ values were fixed at 1.2 times $U_{\text {eq }}$ of the parent atom.

Data collection: DIF4 (Stoe, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

We thank Mr A. Weinkauf for technical assistance.

References

Lenoir, D. (1977). Synthesis, pp. 553-554.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. Univ. of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stoe (1992). DIF4 and REDU4. Stoe \& Cie, Darmstadt, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

